德國(guó)銀杉蓄電池及鋰離子電池不能快充的原因
對(duì)于鋰離子電池純電動(dòng)汽車,充電難目前仍然是個(gè)很大的問(wèn)題,因而“快充”也成了很多廠家的噱頭。筆者個(gè)人認(rèn)為,鋰電的快充問(wèn)題需要從兩個(gè)層次進(jìn)行分析。
從電芯層面而言,鋰離子電池的倍率性能一方面受到正極/電解液/負(fù)極電極材料搭配體系本征傳輸特性的制約,另一方面極片工藝和電芯結(jié)構(gòu)設(shè)計(jì)也對(duì)倍率性能有較大影響。
德國(guó)SILVERFIR
但是從最本征的載流子傳導(dǎo)與輸運(yùn)行為而言,銀杉鋰電并不適合“快充”。鋰電體系的本征載流子傳導(dǎo)與輸運(yùn)行為取決于正負(fù)極材料的電導(dǎo)與鋰離子擴(kuò)散系數(shù)以及有機(jī)電解液的電導(dǎo)率這幾個(gè)主要因素。基于嵌入式反應(yīng)機(jī)理,德國(guó)SILVERFIR鋰離子在正極材料(一維離子通道的橄欖石,二維通道的層狀材料和三維通道的尖晶石正極材料)和負(fù)極石墨負(fù)極材料(層狀結(jié)構(gòu))中的擴(kuò)散系數(shù)普遍比水系二次電池中的異相氧化還原反應(yīng)的速率常數(shù)低數(shù)個(gè)數(shù)量級(jí)。
而且,有機(jī)電解液的離子電導(dǎo)率比水系二次電池電解液(強(qiáng)酸或者強(qiáng)堿)低兩個(gè)數(shù)量級(jí)。銀杉鋰電的負(fù)極表面有一層SEI膜,實(shí)際上德國(guó)SILVERFIR鋰電的倍率性能很大程度上受到鋰離子在SEI膜中擴(kuò)散的控制。由于有機(jī)電解液中粉末電極的極化相對(duì)水系要嚴(yán)重得多,在高倍率或者低溫條件下負(fù)極表面容易析鋰而帶來(lái)嚴(yán)重的安全隱患。
另外,在大倍率充電條件下,正極材料的晶格容易受到破壞,負(fù)極石墨片層同樣也可能受到損害,這些因素都將加速容量的衰減,從而嚴(yán)重影響動(dòng)力電池使用壽命。因此,嵌入式反應(yīng)的本質(zhì)特征決定了鋰離子電池并不適合高倍率充電。研究結(jié)果已經(jīng)證實(shí),快充快放模式下單體電池的循環(huán)壽命將大幅下降,并且在使用后期電池性能顯著衰減。
鈦酸鋰的倍率性能可以從其晶體結(jié)構(gòu)和離子擴(kuò)散系數(shù)得到解釋。但是,鈦酸鋰電池的能量密度很低,其功率型用途是依靠犧牲能量密度取得的,這就導(dǎo)致了鈦酸鋰電池單位能量($/Wh)成本很高,低性價(jià)比決定了鈦酸鋰電池不可能成為鋰電發(fā)展的主流。事實(shí)上,日本東芝SCiB電池這幾年低迷的銷售態(tài)勢(shì)已經(jīng)說(shuō)明了問(wèn)題。
在電芯層面,可以從極片工藝和電芯結(jié)構(gòu)設(shè)計(jì)角度來(lái)改善倍率性能,比如將電極做得比較薄或者增加導(dǎo)電劑比例等措施都是常用的技術(shù)手段。更有甚者,甚至有廠家采用取消電芯中的熱敏電阻并且加厚集流體這樣的極端辦法。而事實(shí)上,國(guó)內(nèi)很多動(dòng)力電池公司都將其LFP動(dòng)力電池在30C甚至50C的高倍率數(shù)據(jù)作為技術(shù)亮點(diǎn)。
筆者這里要指出的是,作為測(cè)試手段無(wú)可厚非,但是電芯內(nèi)部到底發(fā)生了哪些變化才是關(guān)鍵。長(zhǎng)時(shí)間高倍率充放,也許正負(fù)極材料結(jié)構(gòu)已經(jīng)被破壞,負(fù)極早已析鋰,這些問(wèn)題需要使用一些原位(In-Situ)的檢測(cè)手段(比如SEM,XRD和中子衍射等)才能搞清楚。很遺憾的是,這些原位檢測(cè)手段在國(guó)內(nèi)電池企業(yè)幾乎沒(méi)有應(yīng)用的報(bào)道。
筆者這里還要提醒讀者注意鋰電充電和放電過(guò)程的區(qū)別,與充電過(guò)程不同的是,鋰電在較高的倍率下放電(對(duì)外做功)對(duì)電池造成的損害并沒(méi)有快充那么嚴(yán)重,這點(diǎn)跟其它水系二次電池類似。但是對(duì)電動(dòng)汽車的實(shí)際使用而言,高倍率充電(快充)的需求無(wú)疑要比大電流放電更加迫切。
從電芯層面而言,鋰離子電池的倍率性能一方面受到正極/電解液/負(fù)極電極材料搭配體系本征傳輸特性的制約,另一方面極片工藝和電芯結(jié)構(gòu)設(shè)計(jì)也對(duì)倍率性能有較大影響。
德國(guó)SILVERFIR
但是從最本征的載流子傳導(dǎo)與輸運(yùn)行為而言,銀杉鋰電并不適合“快充”。鋰電體系的本征載流子傳導(dǎo)與輸運(yùn)行為取決于正負(fù)極材料的電導(dǎo)與鋰離子擴(kuò)散系數(shù)以及有機(jī)電解液的電導(dǎo)率這幾個(gè)主要因素。基于嵌入式反應(yīng)機(jī)理,德國(guó)SILVERFIR鋰離子在正極材料(一維離子通道的橄欖石,二維通道的層狀材料和三維通道的尖晶石正極材料)和負(fù)極石墨負(fù)極材料(層狀結(jié)構(gòu))中的擴(kuò)散系數(shù)普遍比水系二次電池中的異相氧化還原反應(yīng)的速率常數(shù)低數(shù)個(gè)數(shù)量級(jí)。
而且,有機(jī)電解液的離子電導(dǎo)率比水系二次電池電解液(強(qiáng)酸或者強(qiáng)堿)低兩個(gè)數(shù)量級(jí)。銀杉鋰電的負(fù)極表面有一層SEI膜,實(shí)際上德國(guó)SILVERFIR鋰電的倍率性能很大程度上受到鋰離子在SEI膜中擴(kuò)散的控制。由于有機(jī)電解液中粉末電極的極化相對(duì)水系要嚴(yán)重得多,在高倍率或者低溫條件下負(fù)極表面容易析鋰而帶來(lái)嚴(yán)重的安全隱患。
另外,在大倍率充電條件下,正極材料的晶格容易受到破壞,負(fù)極石墨片層同樣也可能受到損害,這些因素都將加速容量的衰減,從而嚴(yán)重影響動(dòng)力電池使用壽命。因此,嵌入式反應(yīng)的本質(zhì)特征決定了鋰離子電池并不適合高倍率充電。研究結(jié)果已經(jīng)證實(shí),快充快放模式下單體電池的循環(huán)壽命將大幅下降,并且在使用后期電池性能顯著衰減。
鈦酸鋰的倍率性能可以從其晶體結(jié)構(gòu)和離子擴(kuò)散系數(shù)得到解釋。但是,鈦酸鋰電池的能量密度很低,其功率型用途是依靠犧牲能量密度取得的,這就導(dǎo)致了鈦酸鋰電池單位能量($/Wh)成本很高,低性價(jià)比決定了鈦酸鋰電池不可能成為鋰電發(fā)展的主流。事實(shí)上,日本東芝SCiB電池這幾年低迷的銷售態(tài)勢(shì)已經(jīng)說(shuō)明了問(wèn)題。
在電芯層面,可以從極片工藝和電芯結(jié)構(gòu)設(shè)計(jì)角度來(lái)改善倍率性能,比如將電極做得比較薄或者增加導(dǎo)電劑比例等措施都是常用的技術(shù)手段。更有甚者,甚至有廠家采用取消電芯中的熱敏電阻并且加厚集流體這樣的極端辦法。而事實(shí)上,國(guó)內(nèi)很多動(dòng)力電池公司都將其LFP動(dòng)力電池在30C甚至50C的高倍率數(shù)據(jù)作為技術(shù)亮點(diǎn)。
筆者這里要指出的是,作為測(cè)試手段無(wú)可厚非,但是電芯內(nèi)部到底發(fā)生了哪些變化才是關(guān)鍵。長(zhǎng)時(shí)間高倍率充放,也許正負(fù)極材料結(jié)構(gòu)已經(jīng)被破壞,負(fù)極早已析鋰,這些問(wèn)題需要使用一些原位(In-Situ)的檢測(cè)手段(比如SEM,XRD和中子衍射等)才能搞清楚。很遺憾的是,這些原位檢測(cè)手段在國(guó)內(nèi)電池企業(yè)幾乎沒(méi)有應(yīng)用的報(bào)道。
筆者這里還要提醒讀者注意鋰電充電和放電過(guò)程的區(qū)別,與充電過(guò)程不同的是,鋰電在較高的倍率下放電(對(duì)外做功)對(duì)電池造成的損害并沒(méi)有快充那么嚴(yán)重,這點(diǎn)跟其它水系二次電池類似。但是對(duì)電動(dòng)汽車的實(shí)際使用而言,高倍率充電(快充)的需求無(wú)疑要比大電流放電更加迫切。